МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE FOR STANDARDIZATION METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT EN 12895-2012

Совместимость технических средств электромагнитная МАШИНЫ НАПОЛЬНОГО ТРАНСПОРТА

(EN 12895:2000, IDT)

Издание официальное

Москва Стандартинформ 2013

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отменью»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Научно-производственным республиканским унитарным предприятием «Белорусский государственный институт стандартизации и сертификации (БелГИСС)»
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 54-П от 03 декабря 2012 г.)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	С окращенное наименование национального органа по стандартизации	
Армения	AM	Армгосстандарт	
Беларусь	BY	Госстандарт Республики Беларусь	
Казахстан	KZ	Госстандарт Республики Казах стан	
Кыргыз стан	KG	Кыргызстандарт	
Молдова	MD	Молдова-Стандарт	
Российская Федерация	RU	Росстандарт	
Узбекистан	UZ	Узстандарт	

- 4 Приказ ом Федерального агентства по техническому регулированию и метрологии от 06.09.2013 г. № 896-ст межгосударственный стандарт ГОСТ EN 12895—2012 введен в действие в качестве национального стандарта Российской Федерации с 01.07.2014.
- 5 Настоящий стандарт идентичен международному стандарту EN 12895:2000 Industrial trucks. Electrom agnetic compatibility (EN 12895:2000 Машины напольного транспорта. Электромагнитная совместимость).
- В стандарт внесено редакционное изменение: наименование настоящего стандарта изменено относительно наименования европейского стандарта в связи с особенностями построения межго-

сударственной системы стандартизации и для приведения в соответствии с ГОСТ 1.5-2001 (подраздел 3.6).

Европейский стандарт разработан техническим комитетом CENELEC/TC 150 «Машины напольного транспорта. Безопасность»

Перевод с английского языка (en).

Сведения о соответствии межгосударственного стандарта ссыпочному европейскому стандарту, приведены в дополнительном приложении ДА.

Степень соответствия – идентичная (IDT)

6 ВВЕДЕН ВПЕРВЫЕ

Информация о въедении в действие (прекращении действия) настоящего стандарта публикуется в указателе «Национальные стандарты».

Информация об изменениях к настоящему стандарту публикуется в указателе «Национальные стандарты», а текст изменений — в информационных указателях «Национальные стандарты». В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе «Национальные стандарты».

© Стандартинформ, 2013

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

Введение
1 Область применения
2 Нормативные ссылки
3 Термины и определения
3.1 Испытуемый образец
3.2 Электрическая/электронная система
4 Требования
4.1 Помех оэмиссия
4.2 П омех оустойчивость
5 Испытания
5.1 Общие требования
5.2 Испытание на помех оэмиссию
5.2.1 Испытательное и измерительное оборудование
5,2.2 Методика испытаний.
5.2.3 Испытание шасси
5.2.4 Испытание системы управления грузом с электроприводом
5.2.5 Испытание системы рупевого управления с электроприводом
5.2.6 Испытание вспомогательного электрического оборудования
5.3 Испытание на помех оустойчивость
5.3.1 Испытательное и измерительное оборудование
5.3.2 Основная методика испытаний
5.3.3 Испытание шасси при нупевой скорости
5.3.4 Испытание шасси при малой частоте вращения
5.3.5 Испытание системы управления грузоподъемником
5.3.6 Испытание системы рупевого управления с электроприводом
5.3.7 Испытание вспомогательного электрического оборудования
5.4 Испытание на устойчивость к электростатическим разрядам
б Информация для потребителя
Приложение ZA (справочное) Взаимосвязь европейского стандарта с Директивами EC
Приложение ДА (справочное) Сведения о соответствии межгосударственных стандартог
ссыпочным европейским стандартам
Библиография
. H.

Введение

По мере увеличения использования электронных устройств в областях, где применяются машины напольного транспорта, возникает потребность в обеспечении их устойчивостью к внешним электромагнитным полям. Поскольку все больше машин напольного транспорта оснащено электрическими и электронными устройствами, то возникает необходимость в обеспечении гарантии того, что помех оэмиссия машин находится в приемпемьих пределах.

Высокочастотные электрические помехи появляются во время нормального функционирования многих частей машин напольного транспорта и систем. Они генерируются в широком частотном диапазоне с различными электрическими к арактеристиками.

Электростатические разряды возникают на машинах напольного транспорта.

Настоящий стандарт устанавливает методы испытаний и критерии приемки машин напольного транспорта с учетом конкретных характеристик и эксплуатационных параметров таких машин. В этой связи в методы испытаний были внесены изменения с учетом конструкции машин.

Стандарт не предназначен для использования в рамках Директивы ЕС, касающейся машиностроения.

Описаны два подхода к достижению соответствия:

- испытания полностью укомплектованных машин;
- испытания электрических/электронных систем, адекватных применяемым в машине.

В некоторых случаях может оказаться, что машины будут использоваться в среде, где уровень электромагнитных помех может превышать нормы, установленные настоящим стандартом В таких ситуациях необходимо применять нормы и/или частоты, превышающие указанные параметры испытаний. Кроме того, многие объекты не являются однородными по классам электромагнитных излучений. Например, больницы и аэропорты имеют различные уровни классификации. Для объектов, не подпадающих под стандартную классификацию, могут быть применены специальные правила.

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Совместимость технических средств электромагнитная МАШИНЫ НАПОЛЬНОГО ТРАНСПОРТА

Electrom agnetic compatibility of technical equipment Industrial trucks

Дата введения - 2014-07-01

1 Область применения

Настоящий стандарт распространяется на машины напольного транспорта по ISO 5053 независимо от типа источника питания, на погрузчики с выдвижным грузоподъемником (далее — машины) и их электрические/электронные системы, предназначенные для применения в жилых, коммерческих и промышленных зонах (см. EN 50081-1:1992 и EN 61000-6-2:1999).

Стандарт устанавливает:

- требования и нормы помех оэмиссии и помех оустойчивости;
- методы и критерии оценки машин и их электрических/электронных систем.

Настоящий стандарт не распространяется на:

- машины, предназначенные для применения вне электромагнитного окружения, указанного выше;
- машины, предназначенные для передвижения по дорогам общего пользования с максимальной скоростью более 25 км/ч;
 - дистанционно управляемые машины и их системы;
 - взаимодействующие системы машин;
 - помеки от бортового радиооборудования;
- оборудование, подключенное к источнику переменного тока, который используется только, когда машина не работает (например бортовое зарядное устройство).

Издание официальное

2 Нормативные ссылки

Настоящий стандарт содержит датированные и недатированные ссылки на стандарты, положения других документов. Нормативные ссылки, перечисленные ниже, приведены в соответствующих местах в тексте. Для датированных ссылок последующие их изменения или пересмотр применяют в настоящем стандарте только при внесении в него изменений или пересмотре. Для недатированных ссылок применяют их последние издания.

Если международный стандарт модифицирован CENELEC и обозначен (mod), то применяют соответствующий европейский стандарт.

EN 61000-6-3:2007** Electromagnetic compatibility (EMC) — Part 6-3: Generic standards — Emission standard for residential, commercial and light-industrial environments [Электромагнитная совместимость (ЭМС). Часть 6-3. Общие стандарты. Стандарт на помехоэмиссию для жилык, коммерческих зон и зон легкой промышленности]

EN 61000-6-2:1999 Electromagnetic compatibility (EMC) — Part 6-2: Genetic standards — Immunity for industrial environments (IEC 61000-6-2:1999) [Электромагнитная совместимость (ЭМС). Часть 6-2. Общие стандарты. Устойчивость к электромагнитным помехам в промышленных зонах]

EN 55022;2010 Information technology equipment — Radio disturbance characteristics — Limits and methods of measurement (CISPR 22:2008, mod) (Оборудование информационных технологий. Характеристики радиономех. Нормы и методы измерений)

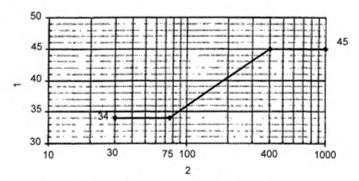
EN 61000-4-2:2009 Electromagnetic compatibility (EMC) — Part 4-2: Testing and measurement techniques — Electrostatic discharge immunity test (IEC 61000-4-2:2008) [Электромагнит-ная совместимость (ЭМС). Часть 4-2. Методы испытаний и измерений. Испытания на устойчивость к электростатическому разряду]

EN 61000-4-3:2006/A1:2007+A2:2010 Electromagnetic compatibility (EMC) — Part 4-3: Testing and measurement techniques — Radiated, radio-frequency, electromagnetic field immunity test (IEC 61000-4-3:2010) [Электромагнитная совместимость (ЭМС). Часть 4-3. Методы испытаний и измерений. Испытание на устойчивость к излучаемому радиочастотному электромагнитному полю]

^{*}Действует взамен EN 50081-1:1992.

3 Термины и определения

В настоящем стандарте применяют спедующие термины с соответствующими определениями:


- 3.1 испытуемый образец (test sample): Машина и/или электрическая/электронная система для проведения испытаний типа в соответствии с настоящим стандартом Этот образец может быть представителем аналогичных конструктивных исполнений машин и/или систем с такими же элементами конструкции, в том числе:
 - машина;
 - электрическая/электронная система управления;
 - электрические механизмы (моторы, генераторы);
 - установка систем, но с максимальной длиной кабелей и жгугов.
- 3.2 электр ическая/электр онная система (electrical/electronic system): Электрический/электронный компонент (компоненты) или набор компонентов со всеми полагающимися соединителями, разъемами и проводами, которые выполняют одну или несколько специализиров анных функций и работают самостоятельно (далее система).

4 Требования

4.1 Помехоэмиссия

Для машин/систем установлены следующие предельные значения напряженности электрического поля на расстоянии 10 м и при высоте расположения антенны 3 м (рисунок 1):

- от 30 до 75 МГц 34 дБ (мжВ/м);
- от 75 до 400 МГц от 34 до 45 дБ (мжВ/м) увеличение с ростом частоты;
- от 400 до 1000 МГц 45 дБ (мжВ/м)

- 1 напряженность электрического поля, дБ (мкВ/м);
- 2 частота, МГц

Рисунок 1 — Предельные значения помекоэмиссии

TOCT EN 12895-2012

При проведении испытаний на расстоянии, отличающемся от 10 м, должны использоваться эквивалентные высота расположения антенны и нормы помех оэмиссии.

Для машин, которые могут быть подсоединены к электрической сети переменного тока, дополнительно к приведенным выше нормам применяются нормы, указанные в таблице 1 EN 50081-1:1992.

Метод измерения должен быть «квазипиковый».

Примечание — Если напряженность поля на расстоянии 10 м не может быть измерена из-за высокого уровня внешних шумов или других причин, то измерение для испытуемого оборудования может проводилься на меньшем расстоянии, например 3 м. Для приведения полученных замеров и указанным в стандарте усповиям и оценых соответствия нормам, рекомендуется использовать коэффициент обратной пропорциональности — 20 дБ на каждую декаду.

Необходимо соблюдать осторожность при измерении помехоэмиссии крупногабаритного оборудования на расстоянии 3 м при частотах, близких к 30 МГц, из-за воздействия электрического поля.

4.2 Помехоустойчивость

Для машин/систем установлены следующие предельные значения:

Таблица 1 — Помех оустойчивость. Физическая граница корпуса

	Вид помехи	Параметры испытаний	Единацы измерения	Основ ной стандарт	
1.1	Частота Напряженность электромагничного поля (немодулированное, среднеквадратическое з начение)	27 –1000* 10	МГц В/ж	EN 61000-4-3	
	Амплитудная модупяция на 1 кГц	80	%		
1.2	Частота Напряженность электромагничного поля (немодулированное, среднеквадратическое значение) Импульская модуляция на цикл	900 ± 5 10 50	МГц В/ж %	EN 61000-4-3	
1.3	Частота повторения импульсов Электростатические разряды	200 4 (Контактный разряд) 8 (Воздушный разряд)	Гц хВ (напряже- ние разряда)	EN 61000-4-2	

Для машин/систем, которые могут быть подсоединены к электрической сети переменного тока, дополнительно к приведенным выше нормам применяют нормы, указанные в таблице 5 EN 61000-6-2:1999. Примечание — На практике в диапазоне частот от 27 до 80 МГц могут быть трудности при создании однородного поля во всем пространстве, окружающем машину/систему. Несмотря на это, необходимо обеспечить, чтобы все критические узлы (машины/системы) подвергались по меньшей мере воздействию поля с напряженностью 10 В/м.

5 Испытания

5.1 Общие требования

Соответствие предельным значениям должно быть подтверждено. Ниже представлены упрощенные испытания без нагрузки, поскольку для всех возможных рабочих режимов проводить испытания нецелесообразно и нереально из экономических и технических соображений.

Испытания должны быть проведены в соответствии с 5.2 - 5.4.

Для обеспечения соответствия должен быть применен один из следующих подходов:

- испытание полностью укомплектованной машины, испытание должно проводиться на одном образце (испытание типа);
- испытание системы, система может быть испытана отдельно от машины, при этом необходимо, чтобы при монтаже системы на машину использовались одинаковые компоненты и провода, то есть физически и электрически подобные испытуемым.

Испытуемый образец/система должен находиться в рабочем состоянии. Для испытаний, возможно, потребуется изменить обычные рабочие условия. Если испытуемый образец/система предназначены для работы с различными номинальными напряжениями, то испытания должны быть проведены в наиболее неблагоприятных условиях эксплуатации.

Испытуемый образец/система должны быть из числа серийно изготавливаемой продукции.

Готовые системы, такие как двигатель внутреннего сгорания с электрооборудованием, могут использоваться без проведения дополнительных испытаний, если они сертифицированы в соответствии с нормами настоящего стандарта. Если способ установки системы на машину значительно отличается от инструкции по монтажу изготовителя системы, то машина/испытуемый образец подлежит испытанию.

Результаты испытаний, методы испытаний и режим работы во время испытания должны быть точно описаны в протоколе испытаний.

5.2 Испытание на помехозмиссию

Испытание всех функций и узлов испытуемого образца/системы должно быть проведено в соответствии с 5.2.3 — 5.2.6. Системы могут испытываться отдельно или в любой комбинации.

Нормы помех оэмиссии должны соответствовать 4.1.

FOCT EN 12895-2012

5.2.1 Испытательное и измерительное оборудование

Испытательное и измерительное оборудование должно соответствовать EN 55022 (за исключением позиционирования антенны).

5.2.2 Методика испытаний

а) Антенна должна накодиться на расстоянии 10 м от машины и иметь высоту расположения 3 м. При ином расстоянии высота расположения антенны выбирается так, как указано в 4.1. Антенна должна устанавливаться на линии, проведенной под прямым углом к середине боковой стороны испытуемого образца без учета габаритов грузоподъемника (см. рисунок 2).

Измерение должно быть проведено с обеих сторон машины/системы при вертикальной и горизонтальной поляризации антенны.

b) После завершения этапа а) по его результатам определяют частоты пяти самых высоких пиков излучения относительно допустимых пределов, то есть самых близких к графику допустимых пределов помех оэмиссии в зависимости от частоты. Затем, изменяя высоту антенны в пределах от 2 до 4 м, повторяют испытание на этих пяти частотах, чтобы гарантировать, что нормы, приведенные на графике, не превышены.

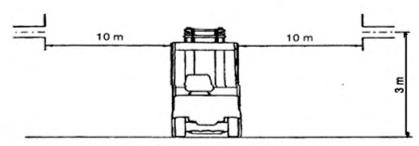


Рисунок 2 – Испътание на помехоэмиссию

Пример размещения антенны относительно машины. На виде спереди антенна показана в вертикальном положении, на виде сверху—в горизонтальном положении.

5.2.3 Испытание шасси

Машина должна быть поднята домкратом (ведущие колеса вращаются свободно), чтобы испытать щасси.

Если шасси снабжены спидометром, то их следует вывести в режим, задающий электродвигателю частоту вращения 60 — 80 % от максимальной рабочей частоты вращения. Если это невозможно, частота вращения электродвигателя должна соответствовать максимальной эксплуатационной частоте вращения.

На машинах с ДВС двигатель внутреннего сгорания с искровой системой зажигания должен работать при частоте вращения 1500 мин⁻¹, дизельный двигатель — с частотой вращения, в 1,5 раза превышающей минимальную частоту вращения колостого кода.

5.2.4 Испытание системы управления грузом с электроприводом

Если система управления грузом имеет электронное импульсное управление, то она должна быть выведена в режим, задающий электродвигателю частоту вращения 60 – 80 % от максимальной рабочей частоты вращения. Если это невозможно, частота вращения электродвигателя должна быть равна максимальной рабочей частоте вращения.

Если в системе управления грузом используются электрические/электронные компоненты, т. е. электромагнитные клапаны или пропорциональные клапаны, испытание должно проводиться с включенными компонентами.

5.2.5 Испытание системы рупевого управления с электроприводом

Испытание должно проводиться при постоянном вращении двигателя рулевого привода. Если рулевая система имеет электронное импульсное управления, испытание должно проводиться в импульсном режиме. Если это невозможно, то частота вращения двигателя должна быть максимальной.

Примечание – При необходимости обеспечения выше указанных условий электродвигатель рулевого привода может быть отключен.

5.2.6 Испытание в спомогательного электрического оборудования

В течение испытания вспомогательные компоненты, такие как преобразователи напряжения, вентиляторы, приводы стеклоочистителя должны быть включены. Электрические/электронные вспомогательные устройства, которые работают только в течение коротких периодов (несколько секунд), например устройство звукового сигнала, приводы смывателей лобового стекла и т. п., испытанию не подлежат.

FOCT EN 12895-2012

5.3 Испытание на помехоустой чивость

Испытание на помех оустойчивость проводится для определения воздействия электромагнитного излучения на отклонения в работе машины от установленных эксплуатационных характеристик. Функции деталей могут быть проверены отдельно или в любой комбинации.

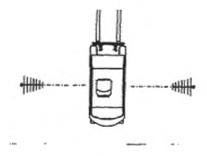
Если рабочие м/или стояночные тормоза управляются электрически/электронно, то они должны сохранять свои функции в течение испытания.

Любые помехи, возникающие в течение испытания, не должны:

- а) влиять на безопасность управления машиной;
- влиять на работу систем безопасности машины или системы;
- с) создавать любой некорректный сигнал, который может стать причиной совершения оператором опасных действий.

Испытание является успешным, когда выполняются требования 5.3.3 - 5.3.7.

Испытание должно проводиться при предельных значениях электромагнитного поля в соответствии с 4.2.


5.3.1 Испытательное и измерительное оборудование

Испытательное и измерительное оборудование должно соответствовать EN 61000-4-3.

5.3.2 Основная методика испытаний

Антенна должна размещаться на расстоянии не менее 3 м от машины/системы на линии, проведенной под прямым углом к середине боковой стороны испытуемого образца (рисунок 3) без учета габаритов грузоподъемника. Расстояние может быть уменьшено при условии однородного поля, как указано в таблице 1 (1.1 и 1.2). Могут быть использованы другие методы испытаний, как указано в EN 61000-4-3.

Измерение должно проводиться по обе стороны от машины/системы с вертикальной и горизонтальной поляризацией антенны.

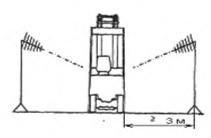


Рисунок 3 – Испытание на помех оустойчивость

Пример расположения антенны относительно машины.

На виде спереди антенна показана в вертикальном положении,
на виде сверх у – в горизонтальном положении.

5.3.3 Испытание шасси при нулевой скорости

Машина должна быть поднята домкратом (ведущие колеса вращаются свободно), чтобы испытать шасси.

Для машин с электроприводом шасси должны быть готовы к работе, но при этом орган управления скоростью отключен. Для машин с двигателем внутреннего сгорания рычаг переключения передач должен быть в нейтральном положении.

В течение испытания частота вращения ведущих колес не должна превышать значение, соответствующее скорости машины 0,05 м/с. Для погрузчиков с двигателем внутреннего сгорания и некоторыми типами шасси невозможно провести испытания в поднятом домкратом состоянии из-за гидромех анических потерь в шасси. В этом случае испытание выполняют когда колеса нах одятся на земле, а машина закреплена с целью предотвращения ее движения. Если используется этот метод, то машина не должна перемещаться в течение всего испытания

FOCT EN 12895-2012

5.3.4 Испытание шасси при малой частоге вращения

Машина должна быть поднята домкратом (колеса вращаются свободно), чтобы испытать шасси.

Ведущие колеса должны вращаться с частотой 20 – 40 % от максимальной рабочей частоты вращения, а в случае машин, скорость движения которых ограничена из соображений безопасности, со скоростью, соответствующей этому предельному значению, если оно ниже 40 % максимальной скорости движения. Заданные параметры управления не должны меняться более чем на 20 % от исходных значений.

5.3.5 Испытание системы управления груз оподъемником

Помех оустойчив ость системы управления грузоподъемником должна быть испытана:

- если гидравлические клапаны управляются электрическим/электронным устройством;
- если усилитель системы рупевого управления задействован от того же электродвигателя, что и привод грузоподъемника.

Испытание должно быть проведено без нагрузки. Частота вращения электродвигателя должна быть установлена 10 — 30 % от его максимальной рабочей частоты вращения.

Заданные параметры управления не должны изменяться более чем на 20 % от исходных значений. При этом не должно быть непреднамеренного движения грузоподъемника.

5.3.6 Испытание системы рупевого управления с электроприводом

Двигатель рупевого привода машины должен:

- а) быть связан с выпюченной системой управления, причем устройство рупевого управления не должно функционировать;
- b) иметь частоту вращения ротора 20 40 % от его максимальной рабочей частоты вращения.

В течение испытания согласно перечислению а) колеса не должны поворачиваться более чем на 0,5 °/с, а при испытаниях согласно перечислению b) заданные параметры не должны изменяться более чем на 20 % от исходных значений. Если система усилителя рулевого управления является частью электронной автоматической системы управления, испытание должно быть выполнено с моделированием системы и с подачей электропитания. Машина должна блокироваться аппаратурой системы управления, установленной на номинальное значение, с неподвижным ротором двигателя рулевого управления. Если установлен механический ограничитель рулевого управления, он должен быть з адействован на протяжении в сего испытания.

Ротор двигателя рулевого управления не должен вращаться в течение испытаний, небольшое вращение допускается там, где система корректирует вынужденные ошибки. Система должна сохранять режим управления и не должна возвращаться к ручному режиму.

5.3.7 Испытание в спомогательного электрического оборудования

В процессе испытания система должна быть присоединенна к источнику питания. В течение испытания не должно происходить никакого изменения, способного привести к возникновению опасности.

5.4 Испытание на устойчивость к электр остатическим разрядам

Испытания на устойчивость к электростатическим разрядам должны быть проведены в соответствии с EN 61000-4-2.

Машина должна быть поднята домкратом (колеса вращаются свободно), если есть риск возникновения опасности для людей и оборудования в течение испытания.

Все системы должны быть присоединены к источнику питания. Испытание должно проводиться с машиной/системой, подготовленной к функционированию, но при этом орган управления скоростью отключен. Для машин с двигателем внутреннего сгорания переключатель передач должен быть в нейтральном положении. Система управления грузом не функционирует, система рулевого управления не используется.

Испытательное оборудование на электростатический разряд должно быть соединено с рамой машины. Выбранные точки должны быть отмечены (зарегистрированы). Допустимо временное ухудшение или потеря функционирования, которые являются самовосстанавливаемыми.

6 Информация для потребителя

Руководство по эксплуатации должно содержать конкретную информацию по электромагнитной совместимости:

FOCT EN 12895-2012

- о допустимых условиях окружающей среды, как определено областью применения настоящего стандарта;
- о том, что модификации и/или дополнения к электрическим/электронным компонентам и системам машины должны соответствовать требованиям настоящего стандарта.

Приложение ZA

(справочное)

Взаимосвязь европейского стандарта с Директивами ЕС

Европейский стандарт разработан Европейским комитетом по стандартизации (CEN) по поручению Комиссии Европейского Сообщества и Европейской Ассоциации свободной торговли (EFTA) и способствует выполнению существенных требований Директивы 2004/108 EC*, касающейся электромагнитной совместимости.

ВНИМ АНИЕ! На изделия, которые входят в область применения европейского стандарта, могут распространяться требования других Директив ЕС.

Соответствие требованиям европейского стандарта является средством выполнения существенных требований Директивы ЕС, касающихся и взаимосвязанных с правилами ЕГТА.

^{*} Действует взамен \$9/336 EC

Приложение ДА

(справочное)

Сведения о соответствии межгосудар ственных стандар тов ссылочным европейским стандартам

Таблица ДА.1 — Сведения о соответствии межгосударственных стандар тов ссылочным региональным стандар там, которые являются модифицированными по отношению к междунар одными стандар тами

Обозначение и наименование ссылочного регионального стандарта	Обозначение и наименование международного стандарта	С тепень соответ- ствия	Обозначение и наименование межгосударственного стандарта
EN 61000-6-3:2007 Электромагнитная совмести- мость (ЭМС). Часть 6-3. Об- щие стандарты. Стандарт на помекоэмиссию для жилык, коммерческих зон и зон легкой промышленности	IEC 61000-6-3;2006 Электромагистная совмести- мость (ЭМС). Часть 6-3. Об- щие стандарты. Стандарт на помекоэмиссию для жилых, коммерческих зон и зон лег- кой промышленности	MOD	ГОСТ 30804.6.3—2013 Совместимость технических средств электромагнитная. Электромагнитная. Электромагнитные помеки от технических средств, применяемых в житых, коммерческих зонах и производственных зонах с малым энергопотреблением. Нормы и методы испытаний
EN 61000-6-2:1999 Электромагнитная совмести- мость (ЭМС). Часть 6-2. Об- щие стандарты. Устойчи- вость и электромагничным помекам в промышленных зонах	IEC 61000-6-2:2005 Электромагнитная сов мести- мость (ЭМС). Часть 6-2. Об- щие стандарты. Помеко устойчивость в отношении индустриальной окрумаю щей среды	MOD	ГОСТ 30804 6.2-2013 Совместимость технических средств электромагнитная. Устойчивость к электромагнитным помекам технических средств, применяемых в промышлениям зонах. Требования и методы испытаний
EN 61000-4-2:2009 Электромагнитная совмести- мость (ЭМС), Часть 4-2. Мето- ды испытаний и измерений. Испытание на устойчивость и электростатическому разряду	мость (ЭМС). Часть 4-2. Методы испытаний и измерений.	MOD	ГОСТ 30804.4.2—2013 Сов местимость технических средств электромагниная. Устойчивость к электростатическим разрядам. Требования и методы испытаний
EN 61000-4-3:2006/A1:2008 + A2:2010 Электромагнитная совместимость (ЭМС). Часть 4-3. Методы испытаний и измерений. Испытания на устойчивость к излучаемому радиочастотному электромагнитному полю	мость (ЭМС). Часть 4-3. Методы испытаний и измерений.	MOD	ГОСТ 30804.4.3—2013 Совместимость технических средств электромагнитная. Устойчивость к радиочастотному электромагнитному полю. Требования и методы испытаний

Библиогр афия

ISO 5053 Powered industrial trucks - Terminology

(Машины напольного транспорта. Терминология)

УДК 621.396/.397.001.4

MKC 33.100.01; 53.060

IDT

Ключевые слова: машины напольного транспорта, помехоэмиссия, помехоустойчивость, электромагнитная совместимость

Руководитель разработки, директор БелГИСС

В.Л Гуревич

Исполнитель, начальник ТО-13

free

В.Н. Чаусов

Исполнитель, начальник TC-131

EZ-

Г.И. Ромбак

Исполнитель, ведущий инженер

de

А.Ю. Никифорова

ОтВНИИНМАШ

Заведующий отделом НИО-301

С.В. Астраханцев

Инженер 1-ой категории

Н.В. Верховина